DAY 5 | WEDNESDAY, MAY 24, 2017

8:00 a.m. - 11:00 a.m. | Room 25C, Upper Level | SYMPOSIUM

Neuromaturational Consequences and Predictors of Heavy Drinking: Findings from the Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA)

Functional Brain Networks Related to Sex, Age, and Alcohol Use in Adolescence: Resting-State and Task-Activated fMRI Findings from NCANDA

Eva M. Müller-Oehring, Ph.D.

Neuroscience Program, Center for Health Sciences, SRI International Department of Psychiatry, Stanford University School of Medicine

AMERICAN PSYCHIATRIC ASSOCIATION 170TH ANNUAL MEETING

Treatment of Alcohol Use and Co-Occurring Psychiatric Disorders Across the Life Span

May 20-24, 2017 | San Diego, CA

Financial disclosure: Nothing to disclose

ADOLESCENT BRAIN DEVELOPMENT

- Brain structural changes during adolescence suggest neural rewiring of large-scale cortical and subcortical networks by forming complex fiber connections.
 - to support the increasingly sophisticated cognitive abilities, motor performance, self-regulation, and reward-focused processing during adolescent development

Healthy neurodevelopment is vulnerable to disruption from environmental insult such as alcohol consumption commonly initiated during adolescence.

NCANDA Resting-State fMRI at Baseline

Demographic characteristics of adolescent study groups for those meeting no/low alcohol use history criteria and those exceeding criteria for at-risk alcohol consumption: N=subject count; Mean ± SD (range)

		No/low	Matched groups		Difference
		alcohol	Exceeds-	Matched no/low	between
		use	criteria	alcohol use	matched
		history	group	history subgroup	groups; p=
Ν	Total	581	117	117	
	Girls/ Boys	306/275	62/55	62/55	1.04
	GE / Siemens	385/196	80/37	72/45	.274
Age (vears)		15.9±2.3	18.6±1.9	18.4±1.8	.39
0 0		(12-21.9)	(13-1.9)	(13-21.9)	
PDS ¹		3.2±0.7	3.7±0.4	3.6±0.4	.28
		(1-4)	(1.8-4)	(2.2-4)	
Alcohol	Days lifetime	1.1±4.2	51.6±75.8	3.1±7.2	<.001
use	Days past year	0.0±2.9	23.7±31.9	1.8±4.9	<.001
	Max drinks ³	0.4±0.9	7.6±4.7	0.8±1.2	<.001
	Binges past year	0	12.2±12.2	0	.004
Marijuana	Days lifetime	0.6±2.5	10.8±17.7	1.0±3.9	.004
use	Days past year	0.3±1.6	7.5±16.0	0.6±2.5	.015
Parental education (years)		16.9±2.4 (6-20)	17.4±2 (12-20)	17.0 ± 2 (11-20)	.19
Highest Grade		9.2±2.4	11.9±1.9	11.8±1.9	.66
		(5-15)	(6-16)	(7-15)	
WRAT ²	Reading	116±17	113±14	114±14	.83
	J	(80-145)	(85-145)	(84-145)	
	Writing	112±16	113±14	113±167	.73
	-	(66-145)	(72-143)	(75-145)	

¹Pubertal Development Score (PDS): score ranges between 1='puberty not started' and 4='puberty completed' ²Wide Range Achievement Test (WRAT): Standard scores are reported with an expected mean±SD of 100±15; ³Maximum number of drinks at one occasion in the past year; ⁴Chi-square test

Müller-Oehring et al. 2017. Cerebral Cortex.

Influences of Age, Sex, and Moderate Alcohol Drinking on the Intrinsic Functional Architecture of Adolescent Brains.

Functional Connectivity

Neurofunctional characteristics underwriting cognitive, motor, self-reflectory and social-emotional function in adolescence can be captured with whole-brain, resting-state functional MRI (rs-fMRI).

Resting-State fMRI Adolescent Intrinsic Network Connectivity

Five Selected Networks:

Müller-Oehring et al. 2017. Cerebral Cortex.

Adolescent Intrinsic Network Connectivity Influences of Sex and Age

Network rewiring with maturation: with older age, connectivity - was stronger in the executive control network (ECN) and spatially more distributed - was weaker in default mode and emotion networks (DMN, EMN)

Sexual dimorphism: - Girls showed stronger connectivity to regions more primal to the seed (SAN,DMN,ECN,RWN) - Boys showed a more spatially distributed SAN connectivity.

Müller-Oehring et al. 2017. Cerebral Cortex.

Functional Brain Maturation

Müller-Oehring et al. 2017. Cerebral Cortex.

PCC

SFG

SFG – Right Insula, Inferior Lateral Frontal, Hippocampus,

SFG – Right Insula, Inferior Lateral Frontal,

Functional Brain Maturation

Performance

Müller-Oehring et al. 2017. Cerebral Cortex.

SFG **Executive Control Network Boys** only

SFG – Right Insula, Inferior Lateral Frontal, Hippocampus,

- Right Insula, Inferior Lateral Frontal, Hippocampus, SFG

Functional Brain Maturation

Sex and Age Adolescent Intrinsic Network Connectivity

Maturation of adolescents functional brain networks is marked by heterochronicity related to age and sex characterizing "intrinsic network rewiring" to support increasingly sophisticated cognitive abilities, motor performance, self-regulation, and reward-focused processing.

Adolescent Intrinsic Network Connectivity Alcohol Use History

Adolescents in the exceed drinking group had attenuated connectivity between the emotion network seed of the amygdala and default mode network regions of the PCC/precuneus.

Müller-Oehring et al. 2017. Cerebral Cortex.

ADOLESCENT BRAIN DEVELOPMENT

the increasingly sophisticated cognitive abilities, motor performance, self-regulation, and reward-focused processing during adolescent development

inhibitory circuitry during task engagement (executive control ability)

<u>At rest</u>, the Executive Control Network was the only of 5 intrinsic networks with expanded connectivity during Adolescent Maturation:

Inhibitory functioning and executive control: Task-Activated fMRI

Age and PDS were more strongly correlated in boys than girls (age/pds: boys *r*=.81, girls *r*=.639, *z*=-2.43, *p*=0.0151).

fMRI task count N=178 with no/low alcohol (87 boys, 91 girls) N=266 task-fMRI n=37 exceed criteria n=229 no/low alcohol (exclude n=44 (19%) motion exclude n=7 with unusable behavioral data)	Bites Advisors			MC, Pittsburg ke, Dubiam
	Boys	Girls	df	р
N	87	91	1	
Age	16±2.34	15.67±2.19	176	.332
Site (UCSD/SRI)	69/18	65/26		.223ª
PDS ¹	2.93±.7	3.34±.65	176	.001
Parent SES	92.06±16.05	90.36±15.15	171	.476
Parent Years of Education	16.76±2.98	16.8±2.46	175	.92
WRAT ²				
Reading	115.86±16.387	112.97±15.882	176	.233
Math	445 (0) 45 (44	440.00 44.045	474	

Testing the Inhibitory Circuitry with the Stroop task

Inhibitory Circuitry

BACKGROUND: Using the Stroop Match-to-Sample task, we previously observed in healthy adults and chronic alcoholics:

Cognitive Control

Fronto-parietal regions

dIPFC, SPL/IPL, PCC Stroop (inc > con) ■ CTL ■ ALC ■ CTL (con > inc)

Schulte et al., 2012. Biological Psychiatry

Motor Control

Cerebellar-BG-motor cortical

MCC, PCC, midbrain ALC > CTL for Stroop-repetition > Stroop-switching

Inhibitory Circuitry in Adolescents

Cognitive Control

Fronto-parietal regions

Cognitive control = Stroop effect (inc vs. con) BLUE (inc) vs. BLUE (con)

Inhibitory Circuitry: Cognitive control and Age

Stroop-RS : parietal, occipital

Stroop-RR: middle cingulate cortex (MCC)

Inhibitory Circuitry: Cognitive control and Pubertal Development

Stroop-RS

Pubertal development score: 1=puberty not started, 4=puberty completed

Inhibitory Circuitry in Adolescents

Inhibitory Circuitry: Motor Control, Age, and Pubertal Development

Response Switching vs Repetition (CON trials only: no cognitive conflict)

Summary and Conclusions

'Neurofunctional Rewiring' in Adolescence

Sexual dimorphism – pubertal development

- Boys showed a more spatially distributed SAN connectivity
- Girls showed stronger connectivity to regions more primal to the seed
- Sex differences in frontal, extratriate, and cerebellar activation depending on control demands and related to pubertal development

Age-related "functional rewiring"

- Weaker DMN-limbic connectivity
- Stronger ECN fronto-limbic connectivity

Alcohol use history in adolescents

- Weaker EMN-DMN connectivity

Age-related activation during an executive control task

Older age

- more parietal, occipital activation for high cognitive & motor control demands
- less MCC activation for low control demands

DAY 5 | WEDNESDAY, MAY 24, 2017

8:00 a.m. - 11:00 a.m. | Room 25C, Upper Level | SYMPOSIUM

Neuromaturational Consequences and Predictors of Heavy Drinking: Findings from the Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA)

THANK YOU

and all NCANDA co-authors

Fiona C. Baker, Sandy A. Brown, Ty Brumback, Weiwei Chu, Duncan B. Clark, Ian M. Colrain, Kevin Cummins, Michael D. De Bellis, Jui-Yang Hong, Dongjin Kwon, M.J. Meloy, Bonnie J. Nagel, Adolf Pfefferbaum, Kilian Pohl, Devin Prouty, Tilman Schulte, Edith V. Sullivan, Susan F. Tapert, J.T. Voyvodic

AM2017 Rotating Slides

May 20-24, 2017 | San Diego, CA